

MDA Phase I SBIR

Title: "Development of a Laser Micromachining Process to Fabricate SiC Mirrors"

MDA Phase I STTR

Title: "Incorporation of Advanced Sensor Technology to Enable Complex Laser Micromachining of Silicon Carbide and Silicon Nitride Devices"

Dr. Larry R. Dosser

Mirror Technology Days

August 16-17, 2005

Presentation Outline

Who is MLPC?

Phase I SBIR & STTR Objectives and Results

Proposed Phase II SBIR & STTR programs

Backside Substrate Laser Machining

Who is MLPC?

- ➤ Located at Mound Laboratory, Miamisburg, Ohio
- ➤ Former DOE Nuclear Weapons Production Facility (1945-1991)
- ➤ MLPC starts in October 1995 as part of defense conversion
- Business Model dynamically connects DoD & Commercial sectors

- ➤ 50% Commercial job shop
- > 50% Government funded R&D
- ➤ Area universities → personnel, diagnostics
- On-the-job training (skilled workforce)
- ➤ Student job → permanent position

Laser Micro-Fabricated Devices

Direct Write Circuitry

- Metals
- Ceramics
- Polymers
- (WBG) Semiconductors
- Superconductors
- Shape memory polymers

Surface Texturing / Micro- structuring

Complex 3-D devices

MDA SBIR Phase I Objectives

- Evaluate the feasibility of laser micromachining of SiC for mirror substrate applications.
- Determine the best laser for producing the optimal surface finish and material removal rates.
- Develop the prototype concept for an automated laser micromachining workstation.
- Evaluate the business case for laser micromachining of SiC mirrors.

Phase I SBIR Results Demonstrate the Potential of Laser SiC Machining

- SiC CVD : R_a ~ 1480 nm, PTV ~ 50 μm
- Laser machined: R_a ~ 750 nm, PTV ~ 13 μm

2. Competitive Processing Rates

 Laser technology is currently showing rapid advances and is scalable

3. Precision Material Removal

- 2 μm material removed per laser beam pass
- Surface finish improves as material is removed

MDA STTR Phase I Objectives

- Evaluate NDE techniques for laser machined SiC.
- Define the optimal laser processing window.
- Evaluate *In-situ* laser ultrasonics for process monitoring and defect detection.

Phase I STTR Results

Investigate the effects of laser micromachining SiC substrates

- 1. No micro-cracks are observed
 - Wide range of laser processing parameters (multiple lasers)
 - Diagnostics performed included AFM, SEM, NSOM, EDAX, WLIM
- 2. Broad range of tunabilty
 - Optimize wrt material removal rate or surface finish
- 3. Laser ultrasonics for defect detection in SiC was demonstrated
 - Potential *in-situ* process monitoring
 - Not necessary
- 4. White Light Interferometry is most useful characterization technique
 - Proposed in Phase II as an online contour mapping technique

Optical Metrology White Light Interferometry

SEM Cross Section

Phase II SBIR / STTR Proposal Development of Prototype Closed-Loop Machining Capability

- Fully automated laser machining workstation incorporating high resolution metrology
- Application Specific Software Development

Mirror Substrate Backside Machining

Mirror Substrate Backside Machining

MDA Phase I SBIR

Title: "Development of a Laser Micromachining Process to Fabricate SiC Mirrors"

MDA Phase I STTR

Title: "Incorporation of Advanced Sensor Technology to Enable Complex Laser Micromachining of Silicon Carbide and Silicon Nitride Devices"

Mirror Technology Days

August 16-17, 2005